Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.


QTRS
  ↳ AAECC Innermost

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.

We have applied [19,8] to switch to innermost. The TRS R 1 is

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The TRS R 2 is

cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)

The signature Sigma is {cond1, cond2}

↳ QTRS
  ↳ AAECC Innermost
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

COND1(s(x), y) → GR(s(x), y)
COND2(false, x, y) → P(x)
COND2(true, x, y) → COND1(y, y)
GR(s(x), s(y)) → GR(x, y)
NEQ(s(x), s(y)) → NEQ(x, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
COND2(false, x, y) → COND1(p(x), y)

The TRS R consists of the following rules:

cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND1(s(x), y) → GR(s(x), y)
COND2(false, x, y) → P(x)
COND2(true, x, y) → COND1(y, y)
GR(s(x), s(y)) → GR(x, y)
NEQ(s(x), s(y)) → NEQ(x, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
COND2(false, x, y) → COND1(p(x), y)

The TRS R consists of the following rules:

cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 2 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

NEQ(s(x), s(y)) → NEQ(x, y)

The TRS R consists of the following rules:

cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

NEQ(s(x), s(y)) → NEQ(x, y)

R is empty.
The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

NEQ(s(x), s(y)) → NEQ(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

R is empty.
The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
COND2(false, x, y) → COND1(p(x), y)

The TRS R consists of the following rules:

cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
COND2(false, x, y) → COND1(p(x), y)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
COND2(false, x, y) → COND1(p(x), y)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND2(false, x, y) → COND1(p(x), y) at position [0] we obtained the following new rules:

COND2(false, 0, y1) → COND1(0, y1)
COND2(false, s(x0), y1) → COND1(x0, y1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, y1) → COND1(0, y1)
COND2(true, x, y) → COND1(y, y)
COND2(false, s(x0), y1) → COND1(x0, y1)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND2(false, s(x0), y1) → COND1(x0, y1)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND2(false, s(x0), y1) → COND1(x0, y1)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP
                                        ↳ NonInfProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
COND2(false, s(x0), y1) → COND1(x0, y1)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [18] with the following steps:
Note that final constraints are written in bold face.


For Pair COND2(true, x, y) → COND1(y, y) the following chains were created:




For Pair COND2(false, s(x0), y1) → COND1(x0, y1) the following chains were created:




For Pair COND1(s(x), y) → COND2(gr(s(x), y), s(x), y) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [18]:

POL(0) = 1   
POL(COND1(x1, x2)) = -1 + x1   
POL(COND2(x1, x2, x3)) = -1 - x1 + x2   
POL(c) = -1   
POL(false) = 0   
POL(gr(x1, x2)) = 0   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following pairs are in P>:

COND2(false, s(x0), y1) → COND1(x0, y1)
The following pairs are in Pbound:

COND2(true, x, y) → COND1(y, y)
COND2(false, s(x0), y1) → COND1(x0, y1)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
The following rules are usable:

truegr(s(x), 0)
gr(x, y) → gr(s(x), s(y))
falsegr(0, x)


↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ NonInfProof
QDP
                                            ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule COND1(s(x), y) → COND2(gr(s(x), y), s(x), y) we obtained the following new rules:

COND1(s(x0), s(x0)) → COND2(gr(s(x0), s(x0)), s(x0), s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ NonInfProof
                                          ↳ QDP
                                            ↳ Instantiation
QDP
                                                ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND1(s(x0), s(x0)) → COND2(gr(s(x0), s(x0)), s(x0), s(x0))
COND2(true, x, y) → COND1(y, y)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND1(s(x0), s(x0)) → COND2(gr(s(x0), s(x0)), s(x0), s(x0)) at position [0] we obtained the following new rules:

COND1(s(x0), s(x0)) → COND2(gr(x0, x0), s(x0), s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ NonInfProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND1(s(x0), s(x0)) → COND2(gr(x0, x0), s(x0), s(x0))
COND2(true, x, y) → COND1(y, y)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule COND2(true, x, y) → COND1(y, y) we obtained the following new rules:

COND2(true, s(z0), s(z0)) → COND1(s(z0), s(z0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ NonInfProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Instantiation
QDP
                                                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND1(s(x0), s(x0)) → COND2(gr(x0, x0), s(x0), s(x0))
COND2(true, s(z0), s(z0)) → COND1(s(z0), s(z0))

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND1(s(x0), s(x0)) → COND2(gr(x0, x0), s(x0), s(x0)) at position [0] we obtained the following new rules:

COND1(s(s(x0)), s(s(x0))) → COND2(gr(x0, x0), s(s(x0)), s(s(x0)))
COND1(s(0), s(0)) → COND2(false, s(0), s(0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ NonInfProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
QDP
                                                            ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND1(s(s(x0)), s(s(x0))) → COND2(gr(x0, x0), s(s(x0)), s(s(x0)))
COND2(true, s(z0), s(z0)) → COND1(s(z0), s(z0))
COND1(s(0), s(0)) → COND2(false, s(0), s(0))

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ NonInfProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
QDP
                                                                ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND1(s(s(x0)), s(s(x0))) → COND2(gr(x0, x0), s(s(x0)), s(s(x0)))
COND2(true, s(z0), s(z0)) → COND1(s(z0), s(z0))

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule COND2(true, s(z0), s(z0)) → COND1(s(z0), s(z0)) we obtained the following new rules:

COND2(true, s(s(z0)), s(s(z0))) → COND1(s(s(z0)), s(s(z0)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ NonInfProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ Instantiation
QDP
                                                                    ↳ MNOCProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, s(s(z0)), s(s(z0))) → COND1(s(s(z0)), s(s(z0)))
COND1(s(s(x0)), s(s(x0))) → COND2(gr(x0, x0), s(s(x0)), s(s(x0)))

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ NonInfProof
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Narrowing
                                                          ↳ QDP
                                                            ↳ DependencyGraphProof
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ MNOCProof
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, s(s(z0)), s(s(z0))) → COND1(s(s(z0)), s(s(z0)))
COND1(s(s(x0)), s(s(x0))) → COND2(gr(x0, x0), s(s(x0)), s(s(x0)))

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

Q is empty.
We have to consider all (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
COND2(false, x, y) → COND1(p(x), y)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(s(x0), x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
neq(0, 0)
neq(0, s(x0))
neq(s(x0), 0)
neq(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ MNOCProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
COND2(false, x, y) → COND1(p(x), y)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ MNOCProof
QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y) → COND1(y, y)
COND1(s(x), y) → COND2(gr(s(x), y), s(x), y)
COND2(false, x, y) → COND1(p(x), y)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

Q is empty.
We have to consider all (P,Q,R)-chains.